
A New Rendering Model for X

Keith Pa
kard

XFree86 Core Team, SuSE In
.

keithp�suse.
om

Abstra
t

X version 11 [SG92℄ was originally designed and

implemented in 1987. In the intervening 13 years,

there have been advan
ements in both appli
ations

and hardware, but the 
ore of the X Window Sys-

tem has remained largely un
hanged. The last ma-

jor X server ar
hite
ture 
hanges were in
luded in

X11R4. The last wide-spread fun
tional enhan
e-

ment exported by the X server might well be the

Shape extension [Pa
89℄, designed (in the hot tub)

at the 1989 Winter Usenix in San Diego.

The rise of inexpensive Unix desktop systems in

the last 
ouple of years has led to the development

of new user-interfa
e libraries, whi
h are not well

served by the existing X rendering model. A new

2D rendering model is being developed to serve this

new 
ommunity of appli
ations. The problem spa
e

and proposed solutions are dis
ussed.

1 Introdu
tion

While a window system is more than a 
olle
tion

of rendering routines, the available rendering primi-

tives 
onstrain the 
apabilities of appli
ations more

than anything else. The X rendering model was de-

veloped to mat
h the abilities of workstation hard-

ware developed �fteen years ago and has signi�-


ant limitations when applied to appli
ation devel-

opment today.

As appli
ation development has advan
ed, the X

proto
ol has devolved into little more than an image

transport me
hanism. Appli
ations perform render-

ing in 
lient-side bu�ers and transport the result to

the s
reen. A shared memory me
hanism for deliv-

ering images to the X server exists when the appli-


ation is running on the same ma
hine as the dis-

play, but performan
e su�ers when attempting to

run these appli
ations over the network.

Many new graphi
s a

elerators are providing a

el-

eration for operations needed by new appli
ations.

Only by moving these operations into the X server


an this a

eleration be made a

essible to X appli-


ations.

2 Origins of X Rendering

A 
ombination of ar
haeology and history is needed

to understand the 
urrent state of X rendering te
h-

nology. Cast your mind ba
k to 1987, and try to

remember graphi
al workstations of that era. A 1

MIPS ma
hine was the state of the art and one was

lu
ky to have 
olor on the desktop. Color, of 
ourse,

was 8 bits with a palette. Those hotheads over at

SGI were making noises about true 
olor hardware,

but for most that was not even a dream. Hardware

a

eleration was available, but frequently no faster

than software, and a huge pain to 
ode for.

The state of the art in 2D rendering was PostS
ript

[Ado85℄. The de�nition of obje
ts by pre
ise mathe-

mati
al formulae was 
ompellingly beautiful to engi-

neers. PostS
ript provided sophisti
ated font te
h-

nology embedded inside the printers of the era, but

left the desktop with only bitmap versions of the

same fonts.

Into this stepped a group of networking proto
ol

and hardware ha
kers intent on updating their latest

o�ering, the X Window System. Not a single one of

them had even been introdu
ed to a 
omputational

geometer, nor did they have the resour
es of the

modern internet to help with the design. Of 
ourse

a 
onstant refrain was to get the darn thing �nished

and out the door. Digital, who was funding the

sample implementation, had produ
t s
hedules to



meet. Meanwhile, ba
k at MIT, Proje
t Athena was

deploying more and more X10 boxes.

So they pi
ked up the PostS
ript \Red Book" and

started writing a spe
i�
ation. Of 
ourse their new

window system was extensible; with any lu
k, lim-

itations in the original design would be masked by


lever add-ons in the future. What they failed to re-

alize was that the Red Book inadequately des
ribed

the a
tual implementation of some primitives. The

developers also la
ked foresight about how diÆ
ult

it would be to 
reate 
onsensus around future ren-

dering standards.

One big limitation of PostS
ript in that era was in

image manipulation. Printers were bla
k-and-white,

so PostS
ript didn't need any 
omplex image 
om-

positing operators. Besides, X was an intera
tive

proto
ol: alpha blending a full-s
reen image looked

like slugs ra
ing down the monitor.

And then there were lumpy lines. The Red Book

des
ribes a beautifully pure line stroking algorithm:

a 
ir
ular pen is dragged along the path and illu-

minates pixels within the 
ir
le. Too bad that the

results look ugly|the apparent width of the line

varies along the length of the line. La
king un-

derstanding of the problem, Adobe kludged around

it. John Hobby had re
ently solved the problem

[Hob85℄, but his solution had not yet been published

outside of Stanford and was not dis
overed by the

X 
ommunity for several years.

Instead of providing PostS
ript paths, X provided

only straight lines and axis-aligned ellipses. Why

axis-aligned? Be
ause there was a rumor that the

rendering algorithm for thin non-axis aligned el-

lipses was patented and there was agreement that

X should be free of patented te
hnologies. This ru-

mor was unfounded; the algorithm (published many

years ago [Pit67℄) was unen
umbered.

At one meeting, members of the X11 team looked

around the table and dis
overed that not one of

them had any 
lue about splines. Instead of do-

ing something wrong, they left them out. Sub-pixel

positioning was deemed an extravagant use of net-

work bandwidth, sin
e it would double the payload

of ea
h rendering primitive by requiring the use of

32 bits for ea
h 
oordinate instead of 16.

The expe
tation was that these issues 
ould be left

for future development in the form of an extension.

However, the usage of X expanded and 
ompatibil-

ity between X servers was deemed a market ne
es-

sity. Creating an extension that existed in only some

X servers would 
reate appli
ation interoperability

problems. Thus the rendering model has stagnated.

2.1 Problems with the Core Proto
ol

Even ignoring new rendering te
hniques, the 
ore

proto
ol rendering ar
hite
ture has some fundamen-

tal problems:

La
k of a sten
iling operator

X10 provided a sten
iling operator for solid �lls,

even this operator is missing from X11. A sten-


il 
an be emulated using a ClipMask, but the

sample implementation of ClipMasks is ineÆ-


ient, making this impra
ti
al.

Sten
iling 
an be used to a

elerate missing

rendering primitives, the appli
ation generates

the appropriate shape in a mono
hrome bitmap

and uses that to sten
il the result to the s
reen.

The implementors of the sample server knew

this and in
luded a sten
iling operator inside

the server for use by higher level primitives.

Separation of lines and ar
s

As useless as axis-aligned ar
s are, they are

made even less useful by being separated from

lines. This means there is no way to join a se-

quen
e of lines and ar
s together. As a spe
ial


ase, zero width/height ar
s are de�ned to be

equivalent to lines, making it possible to render

an axis-aligned rounded re
tangle.

No verti
al es
apement for text

This is all that is needed to render Asian text

and to allow for rotated fonts.

2.2 Features of the Core Proto
ol

In building a new rendering system, it would be un-

wise to ignore the best parts of the existing system:

Pre
ise pixelization

Ea
h X operator, with the ex
eption of thin

primitives, has exa
tly spe
i�ed pixelization re-

quirements. This not only allows for repro-

du
ible rendering a
ross X server implementa-

tions, but probably more importantly allows for



automated testing of the rendering 
ode. The

rules themselves may be broken, but their ex-

isten
e is of vital importan
e.

Pixel values, not 
olors

Providing an underlying pixel value basis for

the rendering system allows for the implemen-

tation of a 
olor-based system in user spa
e.

The reverse is not true. Additionally, the only

way to make boolean pixel operators usable by

appli
ations is to expose the pixel values.

Allow all rendering permutations

X allows appli
ations to render stippled text us-

ing a variety of raster-ops (su
h as XOR). Su
h


ombinations work with all primitives other

than ImageText. This makes it possible to

dither everything on the s
reen in a 
onsistent

manner or to apply a reversible XOR raster-op.

3 Reasons for a New Model

The strongest argument for building a new render-

ing model is in eviden
e on almost every Linux ma-


hine these days. The 
ombination of KDE, Gnome,

and Enlightenment demonstrate that the world of

2D graphi
s is rapidly leaving the X Window Sys-

tem behind. These appli
ations use sophisti
ated

rendering primitives like outlined text and 
ubi


splines. They improve image quality with anti-

aliasing and blend images together with alpha 
om-

positing.

It is no longer a question of what kind of rendering

will be done. The question now is where that ren-

dering should happen. Appli
ations will advan
e,

and X must either keep up or get out of the way.

One thing working in favor of an extension today

is that many new appli
ations are being written us-

ing a higher-level rendering model provided by a

toolkit. Providing new X server fun
tionality that

mat
hes the rendering model in the toolkit allows

for a gradual adoption of the extension as the toolk-

its are modi�ed: the toolkits 
an a

elerate opera-

tions using the extension when available and still

fall ba
k to 
lient-side rendering for older X servers.

4 Components of a New Rendering

System

The 
urrent generation of 2D appli
ations are sim-

ilar in their demands on the rendering system. By

analyzing existing usages and 
hoosing primitives

with 
are, a reasonably 
onsistent system 
an be

built whi
h will be useful for many appli
ations.

The existen
e of appli
ations with well-understood

requirements provides an opportunity la
king in the

initial proto
ol design.

4.1 Alpha Compositing

Alpha 
ompositing is the blending together of im-

ages with a per-pixel (�) value 
ontrolling an arith-

meti
 
ombination of the 
olors. There are many

reasonable fun
tions for this operator. The most


ommon is a translu
en
y operation, in whi
h the


olors are 
ombined as v = �v

1

+ (1� �)v

2

. As im-

ages are 
omposited with this operator, they appear

as translu
ent overlays on the original image.

Alpha 
ompositing is also useful in approximating

anti-aliasing. A suitable fun
tion and 
onstraints

on both the stru
ture and order of the rendering

primitives 
an yield satisfa
tory results.

3D appli
ations make signi�
ant use of alpha 
om-

positing, so graphi
s hardware now 
ommonly sup-

ports some of the most popular alpha 
ompositing

fun
tions of OpenGL. Giving appli
ations a

ess to

hardware 
ompositing will provide dramati
 perfor-

man
e improvements.

There are many di�erent ways of presenting image

data along with alpha 
hannel information. At 32

bits per pixel, the alpha 
hannel is frequently deliv-

ered in the unused upper byte. For 16 bit images

sometimes the alpha 
hannel is embedded as one

of four 4-bit 
omponents and sometimes the alpha


hannel is in a separate 8-bit image.

For appli
ations to be able to take maximal advan-

tage of the available a

eleration, the 
hara
teris-

ti
s of the hardware must be exposed to the ap-

pli
ation. This signi�
antly 
ompli
ates the toolkit,

whi
h must mat
h rendering requests with available

resour
es.

1

1

Better ar
hite
tural ideas are wel
ome.



Alpha 
ompositing is easy to des
ribe in a TrueColor

environment, but more problemati
 in PseudoColor

where there is no linear relation between pixel and


olor. Fortunately, most modern ma
hines are able

to display in TrueColor, making it tempting to pro-

vide this fun
tionality only in that 
ase.

4.2 Anti-Aliasing

Anti-aliasing is the appli
ation of signal pro
ess-

ing in rasterization. It redu
es the high-frequen
y

quantization noise generated by impre
isely posi-

tioned obje
t edges. Con
eptually, anti-aliasing is

performed by oversampling the image and resam-

pling at the s
reen resolution.

A dire
t approa
h would 
reate an oversampled ver-

sion of the image in memory, and resample the 
om-

pleted image either to the frame bu�er or (ideally)

as it is delivered to the s
reen. The prospe
t of mul-

tiplying the amount of video memory by some large

amount and redu
ing rendering performan
e by a

similar amount have led to a sear
h for inexpensive

in
remental approximations.

When displaying a single 
onvex primitive, the sim-

ple alpha 
ompositing operator des
ribed above 
an

be used to a

urately approximate anti-aliasing. By

generating an alpha 
hannel 
ontaining the output

of the resampling �lter, the primitive 
an be 
om-

posited onto the s
reen. However, when more than

one primitive is involved the task be
omes more dif-

�
ult, as the alignment of the edges of ea
h primitive

is lost in the 
ompositing operation.

OpenGL 
ontains a set of more 
ompli
ated alpha

operations, whi
h ameliorate the errors in this ap-

proximation when used properly. A reasonable sub-

set of these operations will be in
luded in the new

system.

As mentioned above, the alpha 
hannel is �lled with

the output of the resampling �lter. Most existing

anti-aliasing systems simply 
ompute the amount of

the pixel 
overed by the obje
t and use that as the

alpha value; for the edges of a polygon, the system

has a measure of that value 
omputed as it walks

the edge. A more sophisti
ated anti-aliasing system

uses the output of a 2D �lter to �ll the alpha 
han-

nel. This �lter 
an even take into a

ount the re-

sponse 
hara
teristi
s of the ele
tron beam display-

ing the image: systems built with su
h te
hniques

work quite well.

Given that this alpha blending te
hnique is only

approximate and that sophisti
ated te
hniques are

likely to be a performan
e problem in the near term,

only the simple 
overage model is 
urrently planned.

Provisions will be made for adding new anti-aliasing

me
hanisms in the future.

4.3 Coordinate System

The 
urrent rendering system uses a 16-bit integer


oordinate spa
e, whi
h is �ne for des
ribing re
t-

angles but impre
ise when drawing text lines and

polygons. Sub-pixel positioning is essential when


ompositing polygons into larger shapes, to avoid

visible dis
ontinuities along edges.

Sub-pixel positioning allows appli
ations to more

pre
isely position obje
ts on the s
reen. To ren-

der an obje
t using the 
ore proto
ol, the 
oordi-

nates must be rounded to the nearest pixel bound-

ary. This mispositions the obje
t by as mu
h as 1/2

pixel. While this may not seem serious, the 
umu-

lative visual e�e
t of many 1/2 pixel errors is quite

noti
eable. S
ott Nelson des
ribes this problem in

more detail [Nel96℄, in
luding an example showing

the improvement o�ered by sub-pixel positions even

in the absen
e of anti-aliasing.

One obvious 
oordinate representation is IEEE 32-

bit 
oating point numbers. The 24 bit mantissa

spe
i�ed by IEEE would provide at least 8 bits of

sub-pixel position within the 16-bit X 
oordinate

spa
e, and would be easy for appli
ations to man-

age.

However, it is desirable for obje
ts to be transla-

tionally invariant. As obje
ts move to larger 
oor-

dinates, IEEE 
oats will slowly drop bits of sub-

pixel position information. This is espe
ially im-

portant as windows move around the s
reen. While

IEEE 
oats 
ould probably be made to work by ar-

ti�
ially limiting their pre
ision for smaller values,

using �xed-point numbers eliminates this problem

entirely.

The next question is how many bits of fra
tion to

use. Four is enough for most appli
ations, but eight

will suÆ
e for all but the most parti
ular uses. Ap-

pli
ations whi
h use larger 
oordinate spa
es will

still need to perform 
lipping operations during the



transformation to X 
oordinates, but with 8-bits of

sub-pixel position, it should suÆ
e for most to sim-

ply trun
ate obje
ts at the boundary of the X 
oor-

dinate spa
e.

For these reasons, 32-bit �xed-point 
oordinates

with 8 fra
tional bits will be used.

4.4 Rendering Primitives

One thing missing from the 
ore proto
ol is a sim-

ple server primitive that 
ould be used to render

geometri
al obje
ts not de�ned by the proto
ol. In-

side a PostS
ript interpreter, the primitive used is

a horizontal trapezoid|that is, the top and bottom

edges are horizontal. LibArt, the rendering library

for the Gnome proje
t, uses an equivalent primitive


alled sorted edge lists.

So, at a minimum, this new primitive will be in-


luded. Unlike the 
ore polygon request, this re-

quest will be able to draw many trapezoids at a

time.

A question remains as to whether PostS
ript-style

paths should be in
luded. Doing so would signi�-


antly redu
e the wire traÆ
 but would 
ompli
ate

the implementation. The paths would in
lude lines,


ubi
 splines and 
hara
ter elements.

Paths would be rasterized by 
ra
king them into

trapezoids as des
ribed above, using a settable error

value to des
ribe the polygonalization of 
urves. By

making this rendering me
hanism expli
it, it would

be possible to pre
isely spe
ify pixelization of the

path in relatively simple terms, and to exa
tly repli-


ate this pixelization on the 
lient side if ne
essary.

4.5 Text

The original X design was done before outline ras-

terizers were used to generate s
reen fonts. The only

fonts available were bitmaps, and the idea of pro-

viding s
aled versions of those for the s
reen la
ked

appeal.

The resulting design does not mat
h the realities of

outline fonts well at all. Even the XLFD spe
i�
a-

tion (and its extensions to support s
alable fonts,

font subsetting, and glyph rotation) is diÆ
ult or

impossible to use with outlined fonts.

One problem to be solved is in the naming and

a

essing of fonts. A simple me
hanism 
ould be

added to provide more 
ontrol over whi
h font is se-

le
ted, and to provide more than a simple string to

identify fonts. Another issue is a

ess to additional

metri
s about the font, su
h as pair kerning tables,

glyph names, and more pre
ise glyph metri
s.

A requirement for modern appli
ations is that the

appli
ation and the X server share a

ess to the raw

outline data and metri
s. This allows the appli
a-

tion to augment the text rendering provided by the

X server with fan
ier versions on the 
lient side. An

easy way to provide this is to extend the X Font

Servi
es Proto
ol [Ful94℄ to in
lude this additional

information.

Another issue with the 
ore proto
ol is in a

ess-

ing glyph metri
s. The 
ore proto
ol provides only

the QueryFont request whi
h retrieves metri
s for

all glyphs in a font at on
e. This allows the 
lient

to qui
kly 
ompute the extents for any set of glyphs

without 
onsulting the server in the future. How-

ever, it also requires that the metri
s for every glyph

in the font be available when the request is made.

For s
alable fonts, this means that the entire font

must be rasterized; for most s
alable te
hnologies,

generating X metri
s is a side e�e
t of rasterizing

glyphs.

Most appli
ations issue a QueryFont for ea
h font

that they open, this means that in normal usage, the

X server rasterizes every glyph in every font used by

appli
ations.

Additionally, the ListFontsWithInfo request returns

bounding metri
s for all glyphs in the font. Com-

puting the bounding metri
s requires the 
omplete

set of metri
s for the font.

New font information requests are needed. A re-

quest to query the metri
s for a list of glyphs along

with a new font listing fun
tion whi
h provides as

mu
h information about the font as 
an be gathered

without rasterizing every glyph.

Better rendering primitives are required as well, al-

lowing for rotation of glyphs and baselines, sub-pixel

positioning, and anti-aliasing.

Dire
t support of glyph outlines may be addressed

at some point. This is somewhat diÆ
ult given the

multipli
ity of outline font formats, the la
k of high-

quality Type1 rasterizers and the additional render-



ing infrastru
ture required.

5 Strategy

Building a new rendering system will take some

time, and feedba
k during the pro
ess is essential

to make it su

essful. To make this possible, the

system will be developed in stages, with ea
h stage

building on the previous stages. Some enhan
e-

ments will be available soon, while others wait both

for resour
es to implement them and for 
onsensus

to be built supporting the parti
ular design.

1. Alpha Compositing

Many appli
ations need this today but are suf-

fering with una

elerated 
lient-side implemen-

tations. This is an operation that graphi
s

hardware 
an improve by a huge amount, form-

ing the basis for anti-aliased graphi
s.

2. Trapezoids

Moving these primitives to the server will re-

du
e the demands pla
ed on the bus between

the CPU and the graphi
s adapter.

3. Paths

Moving these into the server will redu
e wire

traÆ
, but not provide any dramati
 perfor-

man
e improvements ex
ept in a networked en-

vironment.

5. Font Information

Redu
ing the work required to open and list

fonts will improve the ability of the system to


ope with the in
reasing availability of outline

and 16-bit fonts.

4. Font A

ess

Improving the me
hanisms by whi
h the X

server and appli
ation share a

ess to the same

fonts will allow for improvements in manage-

ment and deployment of appli
ations, espe-


ially in a 
omplex networked environment.

5. Text Rendering

Adding the ability to display outline fonts with

the option of anti-aliasing has been on the

\wish list" for a long time.

Ea
h of these systems will be implemented �rst in

software, and then hardware a

eleration will be

provided for some 
ommon graphi
s 
hips. Where

possible, existing graphi
s systems 
an be used to

avoid a dupli
ation of e�ort. In parti
ular, OpenGL

will make this task easier for 
hips whi
h have ap-

propriate support in pla
e.

6 Con
lusion

The existing X rendering model was rushed to 
om-

pletion by people who understood their limitations

and expe
ted it to be qui
kly augmented with suit-

able extensions. No 
redible 2D graphi
s extensions

have been developed in the intervening 13 years, but

the world has re
ently 
hanged. The advent of new

toolkits that provide advan
ed rendering models ab-

stra
ted from the 
ore proto
ol opens a new oppor-

tunity to improve the X Window System. A new

rendering model, designed to solve spe
i�
 perfor-

man
e and network transparen
y issues of these new

toolkits, has the promise of signi�
antly in
reasing

the power of the X desktop environment.

Referen
es

[Ado85℄ Adobe Systems In
orporated. PostS
ript

Language Referen
e Manual. AddisonWes-

ley, 1985.

[Ful94℄ Jim Fulton. The x font servi
e proto
ol. X


onsortium standard, Network Computing

Devi
es, In
., 1994.

[Hob85℄ John D. Hobby. Digitized Brush Traje
to-

ries. PhD thesis, Stanford University, 1985.

Also Stanford Report STAN-CS-85-1070.

[Nel96℄ S
ott R. Nelson. Twelve 
hara
teristi
s of


orre
t antialiased lines. Journal of Graph-

i
s Tools, 1(4):1{20, 1996.

[Pa
89℄ Keith Pa
kard. X nonre
tangular window

shape extension proto
ol. X 
onsortium

standard, MIT X Consortium, 1989.

[Pit67℄ M. L. V. Pitteway. Algorithm for drawing

ellipses or hyperbolae with a digital plot-

ter. The Computer Journal, 10(3):282{289,

November 1967.

[SG92℄ Robert W. S
hei
er and James Gettys. X

Window System. Digital Press, third edi-

tion, 1992.


