A New Rendering Model for X

Keith Packard
XFree86 Core Team, SuSE Inc.
keithp@suse.com

Abstract

X version 11 [SG92] was originally designed and
implemented in 1987. In the intervening 13 years,
there have been advancements in both applications
and hardware, but the core of the X Window Sys-
tem has remained largely unchanged. The last ma-
jor X server architecture changes were included in
X11R4. The last wide-spread functional enhance-
ment exported by the X server might well be the
Shape extension [Pac89], designed (in the hot tub)
at the 1989 Winter Usenix in San Diego.

The rise of inexpensive Unix desktop systems in
the last couple of years has led to the development
of new user-interface libraries, which are not well
served by the existing X rendering model. A new
2D rendering model is being developed to serve this
new community of applications. The problem space
and proposed solutions are discussed.

1 Introduction

While a window system is more than a collection
of rendering routines, the available rendering primi-
tives constrain the capabilities of applications more
than anything else. The X rendering model was de-
veloped to match the abilities of workstation hard-
ware developed fifteen years ago and has signifi-
cant limitations when applied to application devel-
opment today.

As application development has advanced, the X
protocol has devolved into little more than an image
transport mechanism. Applications perform render-
ing in client-side buffers and transport the result to
the screen. A shared memory mechanism for deliv-
ering images to the X server exists when the appli-
cation is running on the same machine as the dis-

play, but performance suffers when attempting to
run these applications over the network.

Many new graphics accelerators are providing accel-
eration for operations needed by new applications.
Only by moving these operations into the X server
can this acceleration be made accessible to X appli-
cations.

2 Origins of X Rendering

A combination of archaeology and history is needed
to understand the current state of X rendering tech-
nology. Cast your mind back to 1987, and try to
remember graphical workstations of that era. A 1
MIPS machine was the state of the art and one was
lucky to have color on the desktop. Color, of course,
was 8 bits with a palette. Those hotheads over at
SGI were making noises about true color hardware,
but for most that was not even a dream. Hardware
acceleration was available, but frequently no faster
than software, and a huge pain to code for.

The state of the art in 2D rendering was PostScript
[Ado85]. The definition of objects by precise mathe-
matical formulae was compellingly beautiful to engi-
neers. PostScript provided sophisticated font tech-
nology embedded inside the printers of the era, but
left the desktop with only bitmap versions of the
same fonts.

Into this stepped a group of networking protocol
and hardware hackers intent on updating their latest
offering, the X Window System. Not a single one of
them had even been introduced to a computational
geometer, nor did they have the resources of the
modern internet to help with the design. Of course
a constant refrain was to get the darn thing finished
and out the door. Digital, who was funding the
sample implementation, had product schedules to



meet. Meanwhile, back at MIT, Project Athena was
deploying more and more X10 boxes.

So they picked up the PostScript “Red Book” and
started writing a specification. Of course their new
window system was extensible; with any luck, lim-
itations in the original design would be masked by
clever add-ons in the future. What they failed to re-
alize was that the Red Book inadequately described
the actual implementation of some primitives. The
developers also lacked foresight about how difficult
it would be to create consensus around future ren-
dering standards.

One big limitation of PostScript in that era was in
image manipulation. Printers were black-and-white,
so PostScript didn’t need any complex image com-
positing operators. Besides, X was an interactive
protocol: alpha blending a full-screen image looked
like slugs racing down the monitor.

And then there were lumpy lines. The Red Book
describes a beautifully pure line stroking algorithm:
a circular pen is dragged along the path and illu-
minates pixels within the circle. Too bad that the
results look ugly—the apparent width of the line
varies along the length of the line. Lacking un-
derstanding of the problem, Adobe kludged around
it. John Hobby had recently solved the problem
[Hob85], but his solution had not yet been published
outside of Stanford and was not discovered by the
X community for several years.

Instead of providing PostScript paths, X provided
only straight lines and axis-aligned ellipses. Why
axis-aligned? Because there was a rumor that the
rendering algorithm for thin non-axis aligned el-
lipses was patented and there was agreement that
X should be free of patented technologies. This ru-
mor was unfounded; the algorithm (published many
years ago [Pit67]) was unencumbered.

At one meeting, members of the X11 team looked
around the table and discovered that not one of
them had any clue about splines. Instead of do-
ing something wrong, they left them out. Sub-pixel
positioning was deemed an extravagant use of net-
work bandwidth, since it would double the payload
of each rendering primitive by requiring the use of
32 bits for each coordinate instead of 16.

The expectation was that these issues could be left
for future development in the form of an extension.
However, the usage of X expanded and compatibil-

ity between X servers was deemed a market neces-
sity. Creating an extension that existed in only some
X servers would create application interoperability
problems. Thus the rendering model has stagnated.

2.1 Problems with the Core Protocol

Even ignoring new rendering techniques, the core
protocol rendering architecture has some fundamen-
tal problems:

Lack of a stenciling operator
X10 provided a stenciling operator for solid fills,
even this operator is missing from X11. A sten-
cil can be emulated using a ClipMask, but the
sample implementation of ClipMasks is ineffi-
cient, making this impractical.

Stenciling can be used to accelerate missing
rendering primitives, the application generates
the appropriate shape in a monochrome bitmap
and uses that to stencil the result to the screen.
The implementors of the sample server knew
this and included a stenciling operator inside
the server for use by higher level primitives.

Separation of lines and arcs

As useless as axis-aligned arcs are, they are
made even less useful by being separated from
lines. This means there is no way to join a se-
quence of lines and arcs together. As a special
case, zero width/height arcs are defined to be
equivalent to lines, making it possible to render
an axis-aligned rounded rectangle.

No vertical escapement for text
This is all that is needed to render Asian text
and to allow for rotated fonts.

2.2 Features of the Core Protocol

In building a new rendering system, it would be un-
wise to ignore the best parts of the existing system:

Precise pixelization
Each X operator, with the exception of thin
primitives, has exactly specified pixelization re-
quirements. This not only allows for repro-
ducible rendering across X server implementa-
tions, but probably more importantly allows for



automated testing of the rendering code. The
rules themselves may be broken, but their ex-
istence is of vital importance.

Pixel values, not colors
Providing an underlying pixel value basis for
the rendering system allows for the implemen-
tation of a color-based system in user space.
The reverse is not true. Additionally, the only
way to make boolean pixel operators usable by
applications is to expose the pixel values.

Allow all rendering permutations
X allows applications to render stippled text us-
ing a variety of raster-ops (such as XOR). Such
combinations work with all primitives other
than ImageText. This makes it possible to
dither everything on the screen in a consistent
manner or to apply a reversible XOR raster-op.

3 Reasons for a New Model

The strongest argument for building a new render-
ing model is in evidence on almost every Linux ma-
chine these days. The combination of KDE, Gnome,
and Enlightenment demonstrate that the world of
2D graphics is rapidly leaving the X Window Sys-
tem behind. These applications use sophisticated
rendering primitives like outlined text and cubic
splines. They improve image quality with anti-
aliasing and blend images together with alpha com-
positing.

It is no longer a question of what kind of rendering
will be done. The question now is where that ren-
dering should happen. Applications will advance,
and X must either keep up or get out of the way.
One thing working in favor of an extension today
is that many new applications are being written us-
ing a higher-level rendering model provided by a
toolkit. Providing new X server functionality that
matches the rendering model in the toolkit allows
for a gradual adoption of the extension as the toolk-
its are modified: the toolkits can accelerate opera-
tions using the extension when available and still
fall back to client-side rendering for older X servers.

4 Components of a New Rendering
System

The current generation of 2D applications are sim-
ilar in their demands on the rendering system. By
analyzing existing usages and choosing primitives
with care, a reasonably consistent system can be
built which will be useful for many applications.
The existence of applications with well-understood
requirements provides an opportunity lacking in the
initial protocol design.

4.1 Alpha Compositing

Alpha compositing is the blending together of im-
ages with a per-pixel («) value controlling an arith-
metic combination of the colors. There are many
reasonable functions for this operator. The most
common is a translucency operation, in which the
colors are combined as v = av; + (1 — a)vy. As im-
ages are composited with this operator, they appear
as translucent overlays on the original image.

Alpha compositing is also useful in approximating
anti-aliasing. A suitable function and constraints
on both the structure and order of the rendering
primitives can yield satisfactory results.

3D applications make significant use of alpha com-
positing, so graphics hardware now commonly sup-
ports some of the most popular alpha compositing
functions of OpenGL. Giving applications access to
hardware compositing will provide dramatic perfor-
mance improvements.

There are many different ways of presenting image
data along with alpha channel information. At 32
bits per pixel, the alpha channel is frequently deliv-
ered in the unused upper byte. For 16 bit images
sometimes the alpha channel is embedded as one
of four 4-bit components and sometimes the alpha
channel is in a separate 8-bit image.

For applications to be able to take maximal advan-
tage of the available acceleration, the characteris-
tics of the hardware must be exposed to the ap-
plication. This significantly complicates the toolkit,
which must match rendering requests with available
resources. !

IBetter architectural ideas are welcome.



Alpha compositing is easy to describe in a TrueColor
environment, but more problematic in PseudoColor
where there is no linear relation between pixel and
color. Fortunately, most modern machines are able
to display in TrueColor, making it tempting to pro-
vide this functionality only in that case.

4.2 Anti-Aliasing

Anti-aliasing is the application of signal process-
ing in rasterization. It reduces the high-frequency
quantization noise generated by imprecisely posi-
tioned object edges. Conceptually, anti-aliasing is
performed by oversampling the image and resam-
pling at the screen resolution.

A direct approach would create an oversampled ver-
sion of the image in memory, and resample the com-
pleted image either to the frame buffer or (ideally)
as it is delivered to the screen. The prospect of mul-
tiplying the amount of video memory by some large
amount and reducing rendering performance by a
similar amount have led to a search for inexpensive
incremental approximations.

When displaying a single convex primitive, the sim-
ple alpha compositing operator described above can
be used to accurately approximate anti-aliasing. By
generating an alpha channel containing the output
of the resampling filter, the primitive can be com-
posited onto the screen. However, when more than
one primitive is involved the task becomes more dif-
ficult, as the alignment of the edges of each primitive
is lost in the compositing operation.

OpenGL contains a set of more complicated alpha
operations, which ameliorate the errors in this ap-
proximation when used properly. A reasonable sub-
set of these operations will be included in the new
system.

As mentioned above, the alpha channel is filled with
the output of the resampling filter. Most existing
anti-aliasing systems simply compute the amount of
the pixel covered by the object and use that as the
alpha value; for the edges of a polygon, the system
has a measure of that value computed as it walks
the edge. A more sophisticated anti-aliasing system
uses the output of a 2D filter to fill the alpha chan-
nel. This filter can even take into account the re-
sponse characteristics of the electron beam display-
ing the image: systems built with such techniques

work quite well.

Given that this alpha blending technique is only
approximate and that sophisticated techniques are
likely to be a performance problem in the near term,
only the simple coverage model is currently planned.
Provisions will be made for adding new anti-aliasing
mechanisms in the future.

4.3 Coordinate System

The current rendering system uses a 16-bit integer
coordinate space, which is fine for describing rect-
angles but imprecise when drawing text lines and
polygons. Sub-pixel positioning is essential when
compositing polygons into larger shapes, to avoid
visible discontinuities along edges.

Sub-pixel positioning allows applications to more
precisely position objects on the screen. To ren-
der an object using the core protocol, the coordi-
nates must be rounded to the nearest pixel bound-
ary. This mispositions the object by as much as 1/2
pixel. While this may not seem serious, the cumu-
lative visual effect of many 1/2 pixel errors is quite
noticeable. Scott Nelson describes this problem in
more detail [Nel96], including an example showing
the improvement offered by sub-pixel positions even
in the absence of anti-aliasing.

One obvious coordinate representation is IEEE 32-
bit floating point numbers. The 24 bit mantissa
specified by IEEE would provide at least 8 bits of
sub-pixel position within the 16-bit X coordinate
space, and would be easy for applications to man-
age.

However, it is desirable for objects to be transla-
tionally invariant. As objects move to larger coor-
dinates, IEEE floats will slowly drop bits of sub-
pixel position information. This is especially im-
portant as windows move around the screen. While
IEEE floats could probably be made to work by ar-
tificially limiting their precision for smaller values,
using fixed-point numbers eliminates this problem
entirely.

The next question is how many bits of fraction to
use. Four is enough for most applications, but eight
will suffice for all but the most particular uses. Ap-
plications which use larger coordinate spaces will
still need to perform clipping operations during the



transformation to X coordinates, but with 8-bits of
sub-pixel position, it should suffice for most to sim-
ply truncate objects at the boundary of the X coor-
dinate space.

For these reasons, 32-bit fixed-point coordinates
with 8 fractional bits will be used.

4.4 Rendering Primitives

One thing missing from the core protocol is a sim-
ple server primitive that could be used to render
geometrical objects not defined by the protocol. In-
side a PostScript interpreter, the primitive used is
a horizontal trapezoid—that is, the top and bottom
edges are horizontal. LibArt, the rendering library
for the Gnome project, uses an equivalent primitive
called sorted edge lists.

So, at a minimum, this new primitive will be in-
cluded. Unlike the core polygon request, this re-
quest will be able to draw many trapezoids at a
time.

A question remains as to whether PostScript-style
paths should be included. Doing so would signifi-
cantly reduce the wire traffic but would complicate
the implementation. The paths would include lines,
cubic splines and character elements.

Paths would be rasterized by cracking them into
trapezoids as described above, using a settable error
value to describe the polygonalization of curves. By
making this rendering mechanism explicit, it would
be possible to precisely specify pixelization of the
path in relatively simple terms, and to exactly repli-
cate this pixelization on the client side if necessary.

4.5 Text

The original X design was done before outline ras-
terizers were used to generate screen fonts. The only
fonts available were bitmaps, and the idea of pro-
viding scaled versions of those for the screen lacked
appeal.

The resulting design does not match the realities of
outline fonts well at all. Even the XLFD specifica-
tion (and its extensions to support scalable fonts,
font subsetting, and glyph rotation) is difficult or
impossible to use with outlined fonts.

One problem to be solved is in the naming and
accessing of fonts. A simple mechanism could be
added to provide more control over which font is se-
lected, and to provide more than a simple string to
identify fonts. Another issue is access to additional
metrics about the font, such as pair kerning tables,
glyph names, and more precise glyph metrics.

A requirement for modern applications is that the
application and the X server share access to the raw
outline data and metrics. This allows the applica-
tion to augment the text rendering provided by the
X server with fancier versions on the client side. An
easy way to provide this is to extend the X Font
Services Protocol [Ful94] to include this additional
information.

Another issue with the core protocol is in access-
ing glyph metrics. The core protocol provides only
the QueryFont request which retrieves metrics for
all glyphs in a font at once. This allows the client
to quickly compute the extents for any set of glyphs
without consulting the server in the future. How-
ever, it also requires that the metrics for every glyph
in the font be available when the request is made.
For scalable fonts, this means that the entire font
must be rasterized; for most scalable technologies,
generating X metrics is a side effect of rasterizing

glyphs.

Most applications issue a QueryFont for each font
that they open, this means that in normal usage, the
X server rasterizes every glyph in every font used by
applications.

Additionally, the ListFontsWithInfo request returns
bounding metrics for all glyphs in the font. Com-
puting the bounding metrics requires the complete
set of metrics for the font.

New font information requests are needed. A re-
quest to query the metrics for a list of glyphs along
with a new font listing function which provides as
much information about the font as can be gathered
without rasterizing every glyph.

Better rendering primitives are required as well, al-
lowing for rotation of glyphs and baselines, sub-pixel
positioning, and anti-aliasing.

Direct support of glyph outlines may be addressed
at some point. This is somewhat difficult given the
multiplicity of outline font formats, the lack of high-
quality Typel rasterizers and the additional render-



ing infrastructure required.

5 Strategy

Building a new rendering system will take some
time, and feedback during the process is essential
to make it successful. To make this possible, the
system will be developed in stages, with each stage
building on the previous stages. Some enhance-
ments will be available soon, while others wait both
for resources to implement them and for consensus
to be built supporting the particular design.

1. Alpha Compositing
Many applications need this today but are suf-
fering with unaccelerated client-side implemen-
tations. This is an operation that graphics
hardware can improve by a huge amount, form-
ing the basis for anti-aliased graphics.

2. Trapezoids
Moving these primitives to the server will re-
duce the demands placed on the bus between
the CPU and the graphics adapter.

3. Paths
Moving these into the server will reduce wire
traffic, but not provide any dramatic perfor-
mance improvements except in a networked en-
vironment.

5. Font Information
Reducing the work required to open and list
fonts will improve the ability of the system to
cope with the increasing availability of outline
and 16-bit fonts.

4. Font Access
Improving the mechanisms by which the X
server and application share access to the same
fonts will allow for improvements in manage-
ment and deployment of applications, espe-
cially in a complex networked environment.

5. Text Rendering
Adding the ability to display outline fonts with
the option of anti-aliasing has been on the
“wish list” for a long time.

Each of these systems will be implemented first in
software, and then hardware acceleration will be

provided for some common graphics chips. Where
possible, existing graphics systems can be used to
avoid a duplication of effort. In particular, OpenGL
will make this task easier for chips which have ap-
propriate support in place.

6 Conclusion

The existing X rendering model was rushed to com-
pletion by people who understood their limitations
and expected it to be quickly augmented with suit-
able extensions. No credible 2D graphics extensions
have been developed in the intervening 13 years, but
the world has recently changed. The advent of new
toolkits that provide advanced rendering models ab-
stracted from the core protocol opens a new oppor-
tunity to improve the X Window System. A new
rendering model, designed to solve specific perfor-
mance and network transparency issues of these new
toolkits, has the promise of significantly increasing
the power of the X desktop environment.

References

[Ado85] Adobe Systems Incorporated. PostScript
Language Reference Manual. Addison Wes-
ley, 1985.

[Ful94] Jim Fulton. The x font service protocol. X
consortium standard, Network Computing

Devices, Inc., 1994.

[Hob85] John D. Hobby. Digitized Brush Trajecto-
ries. PhD thesis, Stanford University, 1985.
Also Stanford Report STAN-CS-85-1070.

[Nel96] Scott R. Nelson. Twelve characteristics of
correct antialiased lines. Journal of Graph-

ics Tools, 1(4):1-20, 1996.

[Pac89] Keith Packard. X nonrectangular window
shape extension protocol. X consortium
standard, MIT X Consortium, 1989.

[Pit67] M. L. V. Pitteway. Algorithm for drawing
ellipses or hyperbolae with a digital plot-
ter. The Computer Journal, 10(3):282-289,
November 1967.

[SG92] Robert W. Scheifler and James Gettys. X

Window System. Digital Press, third edi-
tion, 1992.



