
Online Submission ID: 513

A Realistic 2D Drawing System

Category: System

Abstract

Two dimensional graphics systems are often characterized as just
3D graphics with a fixed Z value. This paper describes a graphics
system built to support high quality 2D rendering by applications
while taking advantage of hardware acceleration designed for 3D
graphics.

The system is divided into three stages: tessellation, rendering
and compositing. The tessellation stage contains a novel algorithm
for handling splines stroked with an elliptical pen. The rendering
stage provides precise pixelization semantics and access to hard-
ware acceleration. Image compositing is enhanced with new opera-
tors that extend the capabilities of traditional Porter/Duff composit-
ing to provide a formal model that supports common incremental
drawing methods.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Antialiasing, Bitmap and framebuffer op-
erations; I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—Boundary representations;

Keywords: Bézier Splines,Document Manipulation,Image Com-
position,Antialiasing

1 Introduction

In this paper, we describe some features of a new realistic 2D graph-
ics system designed to support everyday 2D applications. We use
the term “realistic” to describe both high quality results and also to
distinguish our system from the bulk of existing 2D graphics sys-
tems. These existing 2D graphics systems may suffice for drawing
dialog boxes but often fail to provide sufficient power or control to
support sophisticated applications. Without such support applica-
tions are often forced to render an image using custom code. The
native graphics system serves only to transport the completed image
to the screen.

Our system provides interfaces at a variety of levels enabling ap-
plications to take advantage of whatever pieces of the system are
appropriate. The result is a system which provides access to useful
hardware acceleration and shared drawing code without constrain-
ing the application architecture. An overall view of the system ar-
chitecture is presented in Figure 2. Applications present objects in
the form of splines, trapezoids or images. Splines are tessellated
into trapezoids, trapezoids are rendered to images and the images
are composited to the graphics surface. Figures 1, 3 and 11 show
some images generated with this system.

Figure 1: Sample rendering of SVG (artwork courtesy of Petr Vlk)

Unlike other 2D systems, the tessellation stage is done by an ap-
plication library which can be used to drive several low level graph-
ics devices in addition to the graphics display. The trapezoid ren-
dering and image compositing stages are precisely defined so they
can be duplicated for each graphics device, providing exact image
matching across all supported devices.

Application Tessellation

Rendering

Compositing

Display

Print System

Splines

Trapezoids

Images

Trapezoids
Trapezoids

Images

Figure 2: System Overview

Our system is designed to take advantage of hardware built to ac-
celerate OpenGL[Segal et al. 1999] and DirectX[Bargen and Don-
nelly 1998] while providing semantics suitable for 2D applications.

In addition to these architectural benefits, this work includes
novel extensions to the Porter/Duff compositing model and a new
algorithm for efficient drawing stroked splines based in polygon
convolution theory[Guibas et al. 1983].

1



Online Submission ID: 513

Figure 3: Sample rendering of SVG (artwork courtesy of Petr Vlk)

2 Motivation

This new graphics architecture is motivated by the needs of ap-
plications designed to produce documents using two dimensional
graphics operations. Such applications are not well served by exist-
ing graphics systems and often resort to custom code. Where im-
plemented on top of an existing window system, this custom code
cannot readily take advantage of hardware acceleration. Similarly,
printing support becomes difficult and often available only for a
limited class of output devices.

Exploring the requirements for current page description mecha-
nisms, we found that many have the same basic structure in com-
mon; a “painter’s” model that closely follows Porter/Duff[Porter
and Duff 1984] image compositing and splines that can either be
stroked or filled for geometric objects. We provide cubic Bézier
splines as the only spline representation as they are common in
practice and they are readily targeted by other spline forms.

2.1 Precisely Matched Rendering

With the input of the graphics system specified, an analysis of the
required output reveals a relatively short list. Applications either
generate graphics for display in the window system, construct local
images in memory or produce page description languages for print-
ing. One common requirement among applications is that all forms
of output produce precisely the same results; variation from display
to image or printer is not well tolerated by users.

Application requirements for precise matching of rendering be-
tween display, memory and printing necessitate a greater level of
control over output than existing graphics APIs provide. Instead of
exposing only the highest level graphics primitive with no guaran-
tees of pixelization, this new system provides a range of interfaces
at many levels so that applications can manipulate objects where
necessary to produce the desired results.

Our system splits geometric rendering into three distinct steps
and exposes well defined interfaces between them, allowing appli-
cations control over how each step is performed.

Tessellation is performed within the application through a library
interface. The resulting trapezoids may be rendered locally in mem-
ory or sent to a printer or the window system. Because the tessella-
tion is always performed by the same library for all output media,
the results can match precisely. This particular design is similar
to OpenGL where applications tessellate geometry and present tri-
angles to the graphics system. Our system is unique among 2D

rendering systems all of which expose a broad set of high level op-
erations but no lower level primitives.

Rendering and image compositing may be performed locally
within the library to manipulate images in memory, or within the
window system for display. The pixelization semantics of the sys-
tem are defined so that results computed in either place will match
exactly. The X Window System [Scheifler and Gettys 1992] pro-
vides precise pixelization semantics for its operations, but polygons
are specified with integer coordinates making them unsuitable for
tessellation. OpenGL and the other 2D graphics systems do not pro-
vide any precise specification for pixelization making it impossible
to duplicate the rendering mechanism for in-memory images.

2.2 Hardware Acceleration

Modern graphics hardware is designed to efficiently accelerate the
OpenGL and DirectX APIs. These both provide image compositing
using the Porter/Duff operators; our system is designed to paral-
lel these 3D libraries at the lowest levels so that accelerated im-
plementations can be developed. Image compositing is done in
color value space, as that is most commonly supported by hard-
ware. Future versions of our system will incorporate support for
gamma-corrected compositing when the hardware capabilities are
better understood by the authors.

Existing graphics chipsets have some variability in polygon ren-
dering. As precise pixelization is not required by all applications,
our system permits the selection of an imprecise rendering mode.
An implementation of imprecise rendering is constrained to pre-
serve the semantics necessary for reasonable output.

The precise rendering specification was chosen to permit a
reasonably efficient software implementation so that applications
wouldn’t be forced to use imprecise polygons for acceptable per-
formance. Several different algorithms were analyzed and the cur-
rent one chosen as representing the best balance between speed and
accuracy.

3 Tessellation

The highest-level geometric input accepted by our graphics system
is a path consisting of cubic Bézier splines and straight line seg-
ments. A path can be filled or stroked by a circular/elliptical brush.
In either case, the rendering of a path consists of tessellating the
desired form into a series of trapezoids which are passed to the next
stage of the rendering system as shown in Figure 2. The tessellation
of a filled path is straightforward using known techniques, while the
rendering of a stroked path deserves further discussion.

3.1 Stroking Splines via Convolution

An interesting problem for 2D drawing systems is the rendering
of a curved path as swept out by a curved, convex brush. The re-
sult of sweeping a brush along a path is described by the notion
of a Minkowski Sum. Given two regions A and B in the plane,
their Minkowski sum is the result of all pairwise vector sums for
all points in A and B, that is:

A+B ≡ {a+b |a ∈ A and b ∈ B}

This operation is depicted in Figure 4.
Our approach to computing the Minkowski sum is based on

the theory of tracings and convolutions as set forth by Guibas,
Ramshaw, and Stolfi. A tracing is defined around the contour of
each region, and the convolution of the two tracings computes a
boundary whose interior, (as determined using the winding rule), is

2



Online Submission ID: 513

+ =

Figure 4: Minkowski sum of shape and pen

� =

Figure 5: Convolution of tracings for shape and pen

the Minkowski sum of the two regions. Figure 5 depicts the convo-
lution operation given polygonal tracings approximating the bound-
aries of the regions shown above.

The computational benefit of this technique stems from the fact
that the polygonal boundary formed by the convolution of two
polygonal tracings consists of nothing more than a series of polygo-
nal segments from each tracing as translated by appropriate vertices
from the other tracing. This is significantly simpler than the true
outline of a spline as stroked by a circular pen, yet we are still able
to approximate the exact result within a user-specified error bound.

3.2 Convolution Algorithm

This section presents an algorithm to render a Bézier spline as
stroked by a circular brush of diameter width. The computed
boundary is within an error bound of flatness from the exact result.

We first decompose the spline into a series of straight line seg-
ments using the algorithm developed by deCastlejau and described
by Farin[Farin 1990]. The recursive decomposition is terminated
when the straight line segments deviate from the exact curve by
less than flatness. It is worth noting at this point that the accuracy
required for the approximation of the spline is a function only of
flatness and is independent of the width of the pen.

We also construct a polygonal pen as a regular polygon approx-
imating the brush within flatness. The minimum number of pen
vertices needed is computed as:









π

arccos
(

1− 2·flatness
width

)









The number of vertices is then increased as needed to result in an
even integer ≥ 4.

For the purpose of accurately computing caps for the spline, it is
convenient if the polygonal pen breaks apart into two halves, with
one half acting as the endcap. We arrange this by inserting new
vertices into the pen as necessary.

Next, we establish a tracing from our polygonal pen by travers-
ing it in counterclockwise order. Imagine an observer walking
straight along each segment around the polygon, turning in place
at each vertex. The pair of entry and exit directions are computed
and stored for each vertex. This pair of directions define the active
tangent range for each vertex. If we imagine the polygonal pen be-
ing dragged along the path, the vertices which contain the current
path tangent within their active range are precisely those vertices
that contribute to the convolution boundary.

With those preliminaries out of the way, the body of the algo-
rithm is quite simple:

CONVOLVE: shape, pen → convolution
convolution := empty
v := initial vertex of shape
a := find active vertex of pen given tangent of shape at v
while v is not final vertex of shape

add v+a to convolution
slope := tangent of shape at v
if slope is counterclockwise of active range of a

a := next vertex of pen
else if slope is clockwise of active range a

a := previous vertex of pen
else

v := next vertex of shape

We begin by finding the active pen vertex a at the beginning of
the shape. Then, we simply iterate over each vertex v in the shape.
At each iteration, we add to the convolution the current shape vertex
translated by the current active pen vertex. Then, if the tangent of
the shape lies within the active range of a we continue on to the next
vertex v in the shape. Otherwise, we step a around the pen until its
active range contains the current tangent. As we step around the
pen, we add the traversed pen segments to the convolution.

For sake of demonstration, we have shown an algorithm that
computes only half of the convolution. The second half could be
generated by a second traversal of the path in the opposite direc-
tion as suggested by Guibas et al. We improve on this by always
using a pen with 180◦ radial symmetry. In this way, the active pen
vertex for the “backward” half of the convolution is always directly
opposite the “forward” active vertex. Our implementation is able to
generate the full convolution in a single pass.

Figure 6 depicts 4 stages of the algorithm from the convolution
shown earlier. In 6(a) the pen has just advanced to v. At this point,
the shape turns sharply in place and the exit tangent of the shape
does not lie within the active range of a. Therefore, in 6.(b), the
active vertex a has been stepped twice clockwise around the pen so
that its active range now contains the tangent. In 6(c), the shape is
again turning in place, but this time the new tangent remains within
the active range. So we simply advance the pen again resulting in
the final convolution of 6(d).

Generating the convolution takes linear time with respect to the
number of vertices in the approximation of the shape. The tessella-
tion of the convolution into trapezoids is performed incrementally

3



Online Submission ID: 513

(a)

v a

(b)

v

a

(c)

v

a

(d)

Figure 6: Detail of convolution operation

along with the generation of the convolution. We have discussed
the algorithm in terms of a Bézier spline and a circular brush, but
since the convolution algorithm operates solely on polygonal trac-
ings, the algorithm is general enough to accurately render any shape
stroked by any convex brush as long as both can be approximated
as polygons within an arbitrary error bound.

3.3 Related Work

Many 2D graphics systems employ a simplistic technique for
stroking curves with a brush: decomposing the curve into straight
line segments, then stroking those segments. For example, the
PostScript flattenpath operator declares this as the method used
in PostScript. There are a number of difficulties in accurately ren-
dering a stroked curve with this approach. First, it is readily appar-
ent that computational requirements are increased since many more
line segments must be used to approximate the spline in order to
guarantee smooth edges on the stroke outline. Second, it is diffi-
cult to determine how accurately the spline must be approximated
since this is a function of both the width of the pen and the curva-
ture at each point along the spline. Third, for very wide pens and
very sharp turns, there may not be sufficient numerical precision
available to represent the very short line segments necessary.

Figure 7(a) demonstrates clear visual artifacts in the Ghostscript
rendering of a spline. The image of Figure 7(b) shows the result
from our system using the convolution algorithm described above.
Each image is generated on a 450x450 pixel array with the flat-
ness parameter set to 0.2 pixels. We have demonstrated similar ar-
tifacts using a PostScript interpreter available in a current model
laser printer.

The convolution of polygonal tracings has been applied to the
problem of drawing stroked shapes before. Indeed, this applica-
tion was the original motivation for the mathematical framework
invented by Guibas et al. Hobby[Hobby 1989] and Knuth[Knuth
1986] both use this convolution when stroking splines. Hobby
takes particular care in the design of pen polygons—polygonal pens
which achieve uniform stroke width when rendering to a bi-level
output device.

Our system does not need Hobby’s carefully constructed pen
polygons since antialiasing removes the artifacts which pen poly-
gons are designed to eliminate. However, there is still a significant
advantage to using a polygonal pen to stroke the path rather than an
exact circle. After performing the convolution of a polygonal pen
with a path, the result contains portions of the path translated by
pen vertices interspersed with portions of the pen itself. In Knuth’s

(a) Ghostscript (b) Polygonal Pen

Figure 7: Comparison of spline rendering

Top

Bottom

Left

Right

Figure 8: Trapezoid and sample grid for four pixels

work, the convolution consists of both curves, (from the path), and
linear segments, (from the pen). Our technique yields a simpler
representation for the convolution, (piece-wise linear), while still
approximating the exact convolution with user-defined precision.

4 Rendering Polygons

Several existing 2D graphics applications and libraries (Adobe
Postscript[Adobe Systems Inc. 1985], Adobe Acrobat,
Ghostscript[ghostscript 2003], Gnome libart[Pennington 1999])
tessellate geometric figures into horizontal bands split into trape-
zoidal regions. These regions are delineated by arbitrary lines; the
use of an arbitrary line provides increased accuracy when a single
straight edge spans multiple bands.

Our system represents these as separate trapezoids with two hor-
izontal lines and two arbitrary non-horizontal lines as seen in Figure
8. As the trapezoid representation is rather large, applications are
given the choice to use triangles specified as three vertices in any
of several representations (disjoint, strips and fans). Trapezoids are
used in preference to triangles in 2D graphics because of the num-
ber of rectilinear elements in a typical 2D user interface. Rendering
triangles would introduce seams across every rectangular object.

4



Online Submission ID: 513

The following discussion will use the term polygon, but that should
be understood to mean only these limited trapezoids and triangles.

4.1 Polygons Rendering Requirements

To permit hardware acceleration, our system provides for both im-
precise and precise rendering of polygons, selectable by the appli-
cation. Imprecise polygons are constrained to ensure reasonable
results with tessellated objects:

• Abutting edges must match precisely. When specifying two
polygons abutting along a common edge, if that edge is spec-
ified with the same coordinates in each polygon then the sum
of alpha values for pixels inside the union of the two polygons
must be precisely one.

• Translationally invariant. The pixelization of the polygon
must be the same when the polygon is translated by any whole
number of pixels in any direction.

• Sharp edges are honored. When the polygon is rasterized with
Sharp edges, the implicit alpha mask will contain only 1 or 0
for each pixel.

• Order independent. Two identical polygons specified with
vertices in different orders must generate identical results.

Simple box-filtered (super) sampling hardware should match
these constraints. The specification for Precise polygons also
matches these constraints.

4.2 Precise Polygons

Precise polygons are specified so that different implementations can
produce identical results. While matching at this level is rarely
necessary in interactive environments, system which blend images
from several different rasterizers do need this level of conformance.
However, the actual pixelization is often not important, only that
every implementation agree. With that in mind, a relatively simple
super-sampling specification was developed that could be easily im-
plemented in software.

When computing coverage incrementally polygons, the sum-to-
one requirement means that each step in the alpha value must be
covered by precisely one polygon. As the number of polygons in-
creases, the area of each decreases and eventually represents a sin-
gle point in the pixel. Hence, any sum-to-one incrementally com-
puted rendering algorithm is equivalent to some kind of point sam-
pling.

To provide maximum resolution, we set the number of sample
points equal to the maximum alpha value. For depth 2n, we create a
rectangular grid of points 2n +1 by 2n −1, which is square enough
to avoid significant variation in appearance on rotation. Figure 8
shows the resulting grid at depth 4. For depth 2n+1, we simply line
the points up along the midline of the pixel. This would generate
significant errors were it ever used in practice for depths > 1, but
alpha is generally expressed in 1, 4, 8 or 16 bits.

The current algorithm computes Bresenham coefficients for each
non-horizontal edge and then walks them simultaneously stepping
down to each sample row and counting the number of samples
present in each pixel. This algorithm scales as the number of rows
instead of the total number of samples which is somewhat more
efficient than a straight forward super sampling technique.

We experimented with one point sampling technique which
would automatically adjust the point positions to reduce the error
between the point coverage and the area coverage but discovered
that the local nature of incremental computation couldn’t compen-
sate for the global nature of this automatic placement, so many er-
rors resulted. Of course, the maximum error in any point sampling

technique is unity as the area of the points is zero, so additional
complexity to reduce errors in some cases wasn’t really beneficial.

4.3 Related Work

Edwin Catmull[Catmull 1978] coined the term “area sampling” to
describe the box filter used in our system and many others. His
area sampling was analytic instead of super sampled. As discussed
above, true area sampling is not consistent with our incremental
rendering architecture.

Several works use precomputed filter values with lookup tables
indexed by the location of the line intersection along the pixel edge
[Abram and Westover 1985; Carpenter 1984; Fiume et al. 1983;
Fiume 1991; Greene 1996]. Such lookup tables permit the use of
arbitrary filter constructions, but that is incompatible with our sys-
tem’s requirement for precise sum-to-one semantics. Because these
systems must subtract alpha values, they need to be carefully con-
structed to avoid negative results from that subtraction and to en-
sure precise sum-to-one semantics. Our system provides higher al-
pha resolution with some performance impact, a reasonable tradeoff
given the image precision goals of many 2D graphics applications.

Other systems perform antialiasing by computing the distance
from the pixel to the spline. This approach also allows the use of
arbitrary filters. Some of these[Klassen 1991; Lien et al. 1987]
are limited to single-pixel wide curves. Others[Fabris and Forrest
1997] are much more expensive because many pixels must be mea-
sured against many spline sample points, instead of directly com-
puting the affected pixels and their coverage values.

5 Compositing

Our system uses Porter/Duff image compositing as the fundamen-
tal pixel manipulation primitives in our system, just as in OpenGL,
Quartz, PDF 1.4 and other current graphics systems. This provides
a complete set of operations as well as access to hardware acceler-
ation on current graphics chipsets designed for these other systems.

We start with basic Porter/Duff compositing and extend it in a
novel way to support the common rendering operations of tessella-
tion and repeated pen application.

5.1 General Compositing Function

The Plan 9 window system[Pike 2000] uses a single image com-
positing function as the foundation for the whole graphics system:

dest = (source IN mask) OVER dest

Providing different values for source and mask permits the
complete expression of most graphics operations. As Jim Blinn
says[Blinn 1998], the OVER operator is very nearly the only one
ever needed. An exception to this is where the source must replace
the destination irrespective of alpha. Plan 9 has a special case for
this used, for example, when scrolling windows.

Extending this compositing function to permit any of the com-
positing operators to be used in place of OVER completes the
expression of these remaining operations, eliminating the special
case:

dest = (source IN mask) OP dest

In our system, the source and mask operands may be tiled or
projectively transformed, or be synthesized from a gradient specifi-
cation. The mask operand may also be synthesized from the union
of a collection of polygons; the various masks are added together
and applied in a single operation.

5



Online Submission ID: 513

Uncorrelated:

A B A OVER B

Disjoint:

Conjoint:

Figure 9: Behavior of OVER operators

The result is a complete graphics system which can always be
reduced to it’s component parts; there are no opaque high level op-
erations. An application interested in different polygon rendering
techniques can compute the resulting alpha mask and use that with
the general compositing formula; the alpha computation may not
be accelerated with hardware, but the compositing stage can be.
This is relatively unique among other 2D window systems graphics
models; in most other systems, applications often resort to low level
pixel arithmetic as a part of implementing unsupported higher level
operations.

5.2 Sub-pixel Geometry in Image Compositing

Porter and Duff built an algebraic structure to codify image com-
positing techniques of their day. Most modern color graphics sys-
tems inherit partial pixel coverage and translucency computations
from that definition. The coverage formulae are defined assuming
that the geometry of the various objects are unrelated. Porter and
Duff state if the object geometries were known composite image
colors could be more accurately computed.

Using the actual object geometries to compute each pixel is un-
wieldy in practice, but in at least two common cases the general
character of the geometry is inherent in the algorithms used. The
first is when tessellating a complex object into simple shapes; in this
case, the simple shapes are non-overlapping and we call the sub-
pixel geometries Disjoint. The second is when repeatedly applying
a pen or brush, in which case the shapes are overlapping; these sub-
pixel geometries are called Conjoint. When the subpixel geometry
is unknown, we call it Uncorrelated. This taxonomy could be ex-
tended to other sub-pixel geometries.

In the Disjoint case, as long as the pixel is not completely cov-
ered, each operation treats the pixel as transparent as the assumption
is new coverage occurs only in areas not yet covered; only excess
coverage blends with the existing pixel. In the Conjoint case, as
long as new coverage is less than existing coverage, each pixel is
treated as opaque as the assumption is that new coverage always
overlays existing coverage and only excess coverage is applied to
translucent areas. Figure 9 shows these relationships.

Limiting the analysis to just the OVER operator for brevity, we
can now develop functions that express this relationship. Given two
images, A and B, the uncorrelated operator is:

A OVER B = A+(1−αA)B

(a) Per Pixel (b) Per Component

Figure 10: Comparing pixel-level and component-level composit-
ing

The disjoint operator depends on whether B covers more of the
pixel than is transparent in A. Over coverage reduces the contri-
bution of B by the ratio of the remaining area to the coverage of
B:

A OVERdisjoint B = A+

{

B if αB ≤ 1−αA
1−αA

αB
B otherwise

This operator is equivalent to the OpenGL compositing opera-
tion using FUNC ADD, SRC ALPHA SATURATE, ONE which
is commonly used for the same purpose.

The conjoint operator depends on whether B covers more of the
pixel than A. Where it does, the area covered by B and not by A is
the only contributing part.

A OVERconjoint B = A+

{

0 if αB ≤ αA(

1− αA
αB

)

B otherwise

Similar equations can be constructed for the other compositing
operators.

5.3 Per-Component Compositing

The prevalence of LCD displays in 2D environments suggests that
the graphics system should permit optimizations specific to such
devices. LCD screens differ from CRTs in many ways. One impor-
tant difference is that each color component (red, green or blue) on
the screen is visibly discrete and in a known geometric relation to
other components.

Our system exposes this underlying hardware capability by per-
mitting the mask operand to provide separate alpha values for each
component. As deployed today, this is done for text to good effect.
Extensions to the tessellation operation to exploit this capability
are expected to be provided in a future version of the system. Fig-
ure 10(a) shows a magnified view of an LCD screen with a triangle
rendered with per-pixel compositing while figure 10(b) shows a tri-
angle rendered with per-component compositing.

Note that on an actual screen, interactions of the object geometry
with the component position requires the use of some filtering to re-
duce visible color fringing around the objects. For the current text
implementation, that filtering is done as the glyphs are rasterized.
For the future geometric rendering mechanism, a post-rendering fil-
ter step will be needed for good looking results.

J. Platt et al [Betrisey et al. 2000] describe an algorithm for com-
puting component intensities for a particular image with respect to
the human visual system. Their work doesn’t describe how the re-
sulting intensities should be used within a rendering system. Cur-
rent released systems using this particular technique are limited to
pre-computing colored versions of glyphs as they have no support
for per-component compositing as described here.

6



Online Submission ID: 513

6 Related Systems

This new work builds a complete 2D graphics architecture, com-
parable systems are largely those present in existing 2D window
systems and other 2D graphics applications. Our system is unique
in providing a carefully layered architecture which permits the in-
tegration of application-rendered and system-rendered images for
the support of applications with demanding rendering requirements
while offering hardware accelerated performance. The system in-
cludes a novel algorithm for efficient tesselation of stroked splines,
provides disjoint and conjoint extensions to the compositing oper-
ators and the exposes per-component compositing capabilities for
improving image presentation on LCD monitors.

The Quartz[Apple Computer Corp. 2002] 2D graphics system
is the most comparable fielded system to this work. Differences
are both architectural and functional. Both Quartz and this work
expose Bézier splines as the fundamental geometric primitive and
use Porter/Duff image compositing to manipulate pixels. Our sys-
tem splits the graphics layer underneath the tessellation function
for rendering to various output devices and also provides applica-
tions the ability to supplant the supplied tessellation functionality
with purpose-built code while still permitting a reasonable degree
of hardware acceleration. The Quartz API can be used to generate
PDF output, but all of the tessellation and rendering is performed
by the external PDF engine and so it cannot provide assurances
of identical results. Quartz also lacks the new compositing oper-
ators for disjoint and conjoint sub-pixel geometry as well as per-
component compositing operations.

The Microsoft Windows GDI[Yuan 2001] provides output de-
vice independence, but the bitblt rendering model is essentially
identical to that found in the Xerox Alto[Thacker et al. 1982] which
has been supplanted for color graphics by image compositing. GDI
also provides a wealth of simple geometric figures including lines
and arcs, but not including Bézier splines or paths. Like Quartz,
GDI does not provide any access to the underlying mechanism for
drawing tessellated figures, so alternative geometric objects cannot
be accelerated.

The X Window System is largely equivalent to GDI, except that
it provides only display services which eliminates the ability to pre-
serve or present information in other contexts. The Xprint extension
provides limited support for printing, but there is still no way to
generate images within the application.

The OpenGL Graphics System provides similar capabilities for
presenting geometric objects on the screen, but it’s focus on inter-
active 3D applications produces visible artifacts in static images;
tessellation is limited to triangles with floating point coordinates
and so longer edges produce visible knots. OpenGL also has no
support for alternative rendering targets. Given the prevalence of
OpenGL in applications and as a target for hardware vendors, it did
serve as a model for hardware interaction so that hardware designed
for OpenGL could also be used to accelerate our system.

Page description languages like PostScript[Adobe Systems Inc.
1985], PDF 1.4[Adobe Systems Inc. 2001] and SVG are all con-
sumers of lower level geometric rendering mechanisms and are re-
lated to our system, although not comparable. The PostScript spec-
ification requires that strokes containing curves are implicitly con-
verted to sequences of lines before being rendered. This produces
visible artifacts in the resulting image as demonstrated in figure 7.

7 Implementation

This system has been implemented within the X Window System.
Tessellation is performed by an application library while rendering
and compositing are performed by an X extension. Hardware ac-
celeration of the image compositing operators is implemented. No
hardware acceleration has yet been implemented for the trapezoid

rendering step. The application library will be extended to include
support for PostScript or PDF output for printers as well as to per-
form the rendering and compositing steps to local memory.

While the implementation is not yet mature, it has already proven
valuable in several applications and to be a significant advance in
2D drawing.

Figure 11: Sample rendering of SVG (artwork courtesy of Lauri
Järvlepp)

References

ABRAM, G., AND WESTOVER, L. 1985. Efficient alias-free ren-
dering using bit-masks and look-up tables. In Proceedings of the
12th annual conference on Computer graphics and interactive
techniques, ACM Press, 53–59.

ADOBE SYSTEMS INC. 1985. PostScript Language Reference
Manual. Addison Wesley.

ADOBE SYSTEMS INC. 2001. PDF Reference: Version 1.4, 3rd ed.
Addison-Wesley.

APPLE COMPUTER CORP., 2002. Inside mac os x: Drawing with
quartz 2d. http://developer.apple.com/techpubs/
macosx/CoreTechnologies/graphics/Quartz2D/
drawingwithquartz2d/drawingwithquartz.pdf.

BARGEN, B., AND DONNELLY, T. P. 1998. Inside DirectX. Mi-
crosoft Press.

BETRISEY, C., BLINN, J. F., DRESEVIC, B., HILL, B., HITCH-
COCK, G., KEELY, B., MITCHELL, D. P., PLATT, J. C., AND
WHITTED, T. 2000. Displaced filtering for patterned displays.
In Society for Information Display Symposium, Society for In-
formation Display, 296–299.

BLINN, J. 1998. Jim Blinn’s Corner: Dirty Pixels. Morgan Kauf-
mann.

CARPENTER, L. 1984. The a-buffer, an antialiased hidden sur-
face method. In Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, 103–108.

CATMULL, E. 1978. A hidden-surface algorithm with anti-aliasing.
In Proceedings of the 5th annual conference on Computer graph-
ics and interactive techniques, ACM Press, 6–11.

7



Online Submission ID: 513

FABRIS, A. E., AND FORREST, A. R. 1997. Antialiasing of curves
by discrete pre-filtering. In Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 317–326.

FARIN, G. 1990. Curves and Surfaces for Computer Aided Geo-
metric Design: A Practical Guide, second ed. Academic Press.

FIUME, E., FOURNIER, A., AND RUDOLPH, L. 1983. A par-
allel scan conversion algorithm with anti-aliasing for a general-
purpose ultracomputer. In Proceedings of the 10th annual con-
ference on Computer graphics and interactive techniques, 141–
150.

FIUME, E. 1991. Coverage masks and convolution tables for fast
area sampling. CVGIP: Graphical Models and Image Processing
53, 1, 25–30.

GHOSTSCRIPT, 2003. http://www.ghostscript.com, acessed:
Jan 21 9:31 UTC 2003.

GREENE, N. 1996. Hierarchical polygon tiling with coverage
masks. In Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, ACM Press, 65–74.

GUIBAS, L., RAMSHAW, L., AND STOLFI, J. 1983. A kinetic
framework for computational geometry. In Proceedings of the
IEEE 1983 24th Annual Symposium on the Foundations of Com-
puter Science, IEEE Computer Society Press, 100–111.

HOBBY, J. D. 1989. Rasterizing curves of constant width. Journal
of the ACM (JACM) 36, 2, 209–229.

KLASSEN, R. V. 1991. Drawing antialiased cubic spline curves.
ACM Transactions on Graphics (TOG) 10, 1, 92–108.

KNUTH, D. E. 1986. METAFONT: The Program, vol. D of Com-
puters & Typesetting. Addison Wesley.

LIEN, S.-L., SHANTZ, M., AND PRATT, V. 1987. Adaptive for-
ward differencing for rendering curves and surfaces. In Proceed-
ings of the 14th annual conference on Computer graphics and
interactive techniques, ACM Press, 111–118.

NELSON, G. 1991. Trestle Window System Tutorial. Prentice Hall,
ch. 7.

PENNINGTON, H. 1999. GTK+/Gnome Application Development.
New Riders Publishing.

PIKE, R. 2000. draw - screen graphics. Bell Laboratories. Plan 9
Manual Page Entry.

PORTER, T., AND DUFF, T. 1984. Compositing Digital Images.
Computer Graphics 18, 3 (July), 253–259.

SCHEIFLER, R. W., AND GETTYS, J. 1992. X Window System,
third ed. Digital Press.

SEGAL, M., AKELEY, K., AND (ED), J. L. 1999. The OpenGL
Graphics System: A Specification. SGI.

SYMBOLICS. 1988. Programming the user interface — dictionary,
revised for genera 7.2. Technical Report Book 7B, Pub. No. 99
90 58, Symbolics, Inc., Cambridge, MA, Feb.

THACKER, C. P., ET AL. 1982. Alto: A personal computer. In
Computer Structures: Principles and Examples, S. et al., Ed.
McGraw-Hill, ch. 33. Also CSL-79-11, Xerox Palo Alto Re-
search Center (1979).

YUAN, F. 2001. Windows Graphics Programming: Win32 GDI
and DirectDraw. Prentice Hall.

8


